
Towards Enhancing Security and Resilience in CPS:
A Coq-Maude based approach

Samir OUCHANI
LINEACT, CESI Engineering School

Aix-en-Provence, France
souchani@cesi.fr

Khaled KHEBBEB
LINEACT, CESI Engineering School

Aix-en-Provence, France
kkhebbeb@cesi.fr

Meriem HAFSI
LINEACT, CESI Engineering School

Lyon, France
mhafsi@cesi.fr

Abstract—Cyber-Physical Systems (CPS) have gained con-
siderable interest in the last decade from both industry and
academia. Such systems have proven particularly complex and
provide considerable challenges to master their design and ensure
their functionalities. In this paper, we intend to tackle some
of these challenges related to the security and the resilience of
CPS at the design level. We initiate a CPS modeling approach
to specify such systems structure and behaviors, analyze their
inherent properties and to overcome threats in terms of security
and correctness. In this initiative, we consider a CPS as a
network of entities that communicate through physical and
logical channels, and which purpose is to achieve a set of tasks
expressed as an ordered tree. Our modeling approach proposes a
combination of the Coq theorem prover and the Maude rewriting
system to ensure the soundness and correctness of CPS design.
The introduced solution is illustrated through an automobile
manufacturing case study.

Index Terms—Cyber-Physical Systems, Security, Resilience,
Rewriting Logic, Coq, Maude.

I. INTRODUCTION

Designing modern systems, i.e. systems-of-systems and/or
Cyber-Physical Systems (CPS) is challenging due to many
requirements and difficulties, mainly: scalability, security, and
resiliency. The latter is a system property that enables a
system/system-of-systems to continue providing useful ser-
vices in the face of disruptions, parasites, and attacks. Re-
silience is especially important for systems such as CPS that
have to operate for extended periods in uncertain and dis-
ruptive environments. Unfortunately, the deployed resilience
approaches tend to be ad hoc and do not scale. Importantly, it
is difficult to assess their long-term impact since they are more
static in general, and do not deal with the dynamic behavior
of complex systems, like CPS.

In a dynamic an open environment, CPS are subject to
physical faults, network failures and cyber-attack. Indeed, the
resiliency of CPS should take into consideration at least,
CPS stability, security, and systematicity. Stability means
that the CPS can achieve a stable sensing-actuation close-
loop control even though the inputs (sensing data) have noise
(fault-tolerance) or Byzantine fault. Security means that the
system can overcome the cyber–physical interaction attacks
(internal and external) and Systematicity means that the system
has a seamless integration physical components and updating
software. However, from the literature, many techniques and
approaches are used to design, validate, and analyze large
scale systems. From a design perspective, algebraic specifi-
cation is widely used since many tools support it and solid

formal foundations are dedicated to it. Further, it helps to
prove mathematically the soundness, the correctness, and the
completeness of any analysis/verification/validation algorithm
on the the designed CPS.

In this paper, we rely on two formal approaches, Coq1

and Maude [1], to exploit the scalability of the first and the
automation of the second. Coq is a proof assistant based on
higher-order logic and λ-calculus powered with an extension
of primitive recursion to check the correctness and build
proofs using specifics programs (i.e. tactics). Maude is a high-
level language and a high-performance interpreter that sup-
ports membership equational logic and rewriting-logic-based
specification and programming of systems. Maude system
(language and tools) is chosen as an implementation support
platform of the model for several reasons. Its language is
expressive enough to capture all the aspects of CPS required
to reason on their structure and behavior. It also offers several
rewriting-based tools that are adequate for simulating the spec-
ification, and for conducting formal verification of behavioral
correctness.

From a practical point of view, to secure a CPS against po-
tential sources of performance degradation or attacks exploit-
ing the system attack surfaces, the CPS design should be con-
sidered first, then the CPS deployment and execution should
be controlled and monitored. This paper considers both issues
by initiating the needed fundamentals to design a correct CPS,
and to verify its functionality. Furthermore, it discusses the
CPS security and resiliency. The proposed approach, named
Sec-Res-CPS, contains three main parts: (1) CPS design
using an algebraic specification, (2) CPS correctness and vali-
dation using the proof assistant Coq, (3) fault diagnostics using
Maude. In addition, we discuss security requirements, cyber-
attacks, and failure/countermeasures resilient strategies for the
designed CPS. Cyber-attacks and network failure resilient
strategies act as a state machine system with several strategies
and guards designed for specific cyber-attacks or network
failure. Hence, decision making algorithms have to apply the
best strategies for the existing cyber-attack or network failure
through a model predictive control (monitor) that chooses
the best available control action while guaranteeing a smooth
behavior of CPS. This work focuses mainly on the following
folds.

1https://coq.inria.fr/

• An automatic framework Sec-Res-CPS that analyzes
and guarantees CPS behavioral correctness.

• A formalism that models large scaled CPS.
• Initiate security threats and system faults including at-

tacks, weaknesses, vulnerabilities and countermeasures.

II. RELATED WORK

This section reviews and discusses approaches that deal
with modeling, functional and security analysis, as well as
the resiliency aspect for CPS.

Aguida et al. [2] provide a holistic view of the initiatives
done during the last five years in modeling and designing CPS.
They define and survey the architecture and the design of three
classes of CPS: smart healthcare, smart manufacturing, and
smart city. Cheh et al. [3] rely on hybrid automata to analyze
the safety of railway systems corresponding to different classes
of venomous actors based on to their abilities defined in
the system access control. Ouchani [4] uses the probabilistic
model checker PRISM to analyze the functional correctness
of IoT in an open environment.

Bakirtzis et al. [5] evaluate the security level of CPS at
each step of their life cycle development with the focus on
deploying and operating safety-critical applications. Chen et
al. [6] studied the detectability of data deception in CPS by
assuming that an attack detector has access to a linear function
of the initial state of the system and it can not be changed
by any attacker. Mitchell and Chen [7] used stochastic Petri
nets to develop an analytical model that can capture the
interactions between the adversary and the defense models
of CPS. Agrawal et al. [8] try to design a secure CPS by
relying on two categories of attacks. The external attacks were
considered as a threat model, which might not be able to
connect to an insider threat with the physical access to a CPS.

Ouchani [9] reinforces CPS against attacks that can
be either technical or socio-technical by constrainting a
CPS through security policies expressed as a temporal logic
formulae. Stoicescu et al. [10] identify a change model and
establish a reference frame in which the dynamics faced by
fault-tolerant systems can be illustrated. Then, the execution
of the deployed protocols is broken down in three steps
corresponding to their variable features, then mapped into
a component-based middleware. Finally, they evaluate the
transition execution time and the agility with respect to the
fine-grained adaptive fault tolerance. Pedroni [11] manages
the vulnerabilities of safety-critical systems by considering the
external natural events, integrating vulnerabilities exposed to
cyber attacks, and analyze risks from heterogeneous contribu-
tors in different locations for their aggregate evaluation. Fang
et al. [12] try to assess the resilience of interdependent critical
infrastructure systems under potential disruptive events using
the game-theoretic attacker-defender and defender-attacker-
defender modeling techniques. They advise using policy-
makers on making pre-disruption decisions to improve the
resilience of interdependent infrastructures. Saurabh et al.
[13] structure the management of a system resilience by
relying on resilience-based design patterns at various layers
of the system stack. The patterns coordinate flexible fault
management across hardware and software components. It

also enables optimization of the cost-benefit trade-offs among
performance, resilience, and power consumption.

With respect to the surveyed approaches, the proposed solu-
tion initiates an automatic analysis and validation of CPS. At
this level, we focus more on the correctness of the CPS design
in order to provide a solid foundation for a smart and automatic
recovery and countermeasures that are briefly discussed in this
paper.

III. SEC-RES-CPS FRAMEWORK

Sec-Res-CPS framework proposes to models a system
then analyze and harden its security to ensure its resiliency.
A given system is considered as a composition of different
kinds of entities where each entity has its proper structure
and behavior. The entities can communicate and interleave
in different environment. Sec-Res-CPS models the main
components of a system, and rely on a library of attacks that
can manipulate and harm the system. It then develops a set of
counter measures that harden the system and counterfeit the
attacks. Furthermore, the framework analyzes the vulnerabil-
ities of a system, and reports the errors and counterexample.
Finally, it generates the safe code. The considered part in this
paper from the overall framework is depicted in Fig. 1.

Fig. 1. The Interoperability and Integrity Validation and Evaluation

Sec-Res-CPS develops four stages: modeling (red rect-
angle), analysis (blue rectangle), and implementation (green
rectangle). Herein, we explain each part and steps of
Sec-Res-CPS. Initially at the modeling stage, S models a
given system, A and CM are sets of attacks and countermea-
sures proper to S, respectively. Then in the second stage of
composition, the function Υ generates the potential attacks
AS from A for S, and the function ΨA selects from CM
the countermeasures CMS of S with respect to the selected
attacks AS . Also, the function ΓCM composes S with AS
to produce a malicious system SA,., then the function ΓCM
hardens SA,. with CMS and produces SA,CM. Further in the
third stage of analysis, Ξ produces RA and RCM that show
respectively the effect of A and CM on S. Finally a last phase,
Ξ generates the safe implementation code P of S.

IV. RESILIENT CPS

We consider a system S as a composition of entities E
that interact and interleave through a network of physical and
logical infrastructure (N) to accomplish a given task (T).
Formally, a system S is a tuple 〈E ,N , T 〉.

A. Modeling the entities

An entity ε can behave independently executing sequentially
or deterministically (or not) the allowed actions, or on har-
mony with other entities to form a system executing a global
task. E is the main entities describing CPS, and it is defined
by the tuple 〈id, attr, Actuator,Σ, Beh〉 , where:
• id is a finite set of tags,
• attr : id→ 2T returns the attributes of an entity,
• Actuator specifies the status of an entity by evaluating

its attributes,
• Σ = {Send,Receive,Update} is a finite set of

atomic actions that can be executed by an entity,
• Beh : id × Σ → L returns the expression written in the

language L that describes the behaviour of an entity. The
syntax of L is given by: B ::= α | B ·B | B+gB, where
α ∈ Σ, “ · “ composes sequentially the actions and +g is
a guarded choice decision that depends on the evaluation
of the guard, a propositional formulae, g. When g

∆
= >

the guarded decision become a non deterministic choice.

Example 1. Fig. 2 represents the automation process of cars
assembly industry. We will consider this example through all
the paper to explain the proposed approach steps.

Fig. 2. Smart Robotic Automotive Assembly.

First, we define the entities E = {ε0, ε1, . . . , ε30} where ε0

is the environment, such that:
• ε1 is a robot arm using the tool ε2 to place the front

left door ε3 on the cage ε4. The behavior of the arm
ε1 is given as follows. The decision guard specifies the
equality equation between the current position of the arm
and where the left door should be placed.

Beh(ε1) , Receive(ε2, ε0) · Receive(ε3, ε0)
·(Update(ε5, ε6) +pos(ε4)=val(ε5) Send(ε3, ε4))

• The same description of ε1 is applicable on the other three
arms to place different parts. Regarding the painting task,
it is slightly different since the color type and the used
volume can be changed and repeated for each part. The
following describes the behaviour of a painting arm.

Beh(ε′1) , Receive(ε′2, ε0) · Receive(ε′3, ε0)
·((Update(ε′5, ε′6) +pos(ε4)=val(ε5) Send(ε

′
3, ε
′
4))

+size(ε′3)≤valReceive(ε
′
3, ε0)))

• We mention that fixing the wheels ε25, ε27, ε29, ε31 is
done by the arms ε1, ε7, ε13, ε19 with a similar behavior
as placing doors.

B. Modeling the Network

The network N defines how the entities are connected
and communicate. An entity εi can be connected to another
one through a physical or logical channel for communication
or to a subsystem. In N , we classify the communication
protocols into four categories according to their rates and uses.
Moreover, entities are also used to receive data from external
sources, ranging from a USB flash drive plugged into the
media player to online services granted through mobiles range
communications. We define a network N as a graph where
vertices are the entities and the edges are the way that they
interact and connected N = 〈E ,Chan,Prot,Rel〉, where:
• Chan is a finite set of channels,
• Prot is a finite set of protocols where εProt is the empty

protocol.
• Rel : E × E → Chan× Prot relies two entities with a

channel and a protocol. When εProt is assigned, it means
both nodes are physically connected.

Fig. 4 shows a physical relation between εi and ε′, and a
logical relation through the protocol Prot between the entities
εi and ε.

εi εε′
Prot

Fig. 3. A Network of logical and physical relation between the entities.

Example 2. Fig. 4 depicts how the entities of the system
presented in Example 1 are connected through physical and
logical channels as well communicate via the appropriate
protocols. It defines the relations between arms ε1 and ε1 as
well between them the environment. In addition, the relation
with their used tools, painting and assembly. Further, the server
entity ε′0 communicates with the arms using the protocol P’
whereas the arms evaluate their control variables ε6 using the
protocol P’.

ε0ε′0ε2 ε4

ε1

ε3

ε5ε6

ε7
P

P

P’ P’

Fig. 4. The Network of the Entities in Example 1

C. Modeling the Tasks

The task T is the main goal of the system. It describes the
sequence of actions that should be realized by each entity. We
define a task by a tree where the root represents the main goal
of the system S, the children are sub-goals of the entities, and
leafs are the final product for each entity. The task T is the
tuple 〈Goals,�〉, where:
• Goals is a finite set of goals where G ∈ Goals is the

root (the main goal),

• (Goals,�) is a preoder relation on Goals.

Example 3. Fig. 5 depicts the task tree proper to the model
presented in Example 2. The red node is the global task, blue
nodes are the sub-tasks whereas the green nodes are the final
products for each entity. In Figure 5, T means car assembly, T3

is dealing with a door, T4 is fixing a door, and T5 is painting
a door.

T

T1 T2 R1

ε11ε11ε1

T3

T5 R2

ε22ε22

T4 R3

ε21

ε21

ε2

Fig. 5. Tasks Tree.

V. SECURITY THREATS

Resilient CPS should guarantee the following properties:

• Confidentiality where every message sent, a malicious can
not eavesdrop it.

• Authenticity means that a sent message should be sent
only by the authorized entity.

• Availability should assure that any entity can execute its
behaviour.

• Integrity means an entity, physical or logical, could not
be modified

• Non-repudiation means that an identified entity could not
prove that it has not executed an action.

Since current networks are unable to guarantee these security
properties, we need to analyze if the corresponding vulner-
abilities can be exploited through different possible attacks,
especially:

• Local attacks. They can be done physically by plugging
an additional device on the targeted bus or the on board
diagnostics port.

• Remote attacks: These attacks can be classified through
different ranges: indirect physical access, short range
wireless access and long range wireless access.

• Indirect access: They rely on a compromised third-party
device which will later be connected to an entity through
an attack surface. If a physical connection to the network
is in required, it will be composed with a local attack.

• Short range attacks: These attacks use short-range wire-
less communication technologies through a smart phone
or a connected object, for example.

• Long-range direct attacks: They use long-range wire-
less communication technologies like telephony and web
browsing.

• Long-range indirect attacks: This class uses a long-range
transmission channel to compromise a third party device,
like side channel triggers.

Sec-Res-CPS relies on temporal logic and high order to
express the security properties and tree to model the attacks
(attack trees).

VI. CPS RECOVERY

Before a system recovery, a protection must be taken into
account while designing CPS. The following are the protection
mechanisms adopted by Sec-Res-CPS.
• Constraints: It can be a hardware (gate), software (access

control), or a physical entity (lock). Sec-Res-CPS ex-
presses the constraints as propositional logic formula.

• External communications protections: They are mecha-
nisms to protect CPS from external attacks, like firewall.
These mechanism are modeled as monitors where their
semantics are equivalent the the semantics of the entities.

• Internal protections: They are solutions to how authenti-
cate, lock or encrypt the physical/logical entities.

The above mechanisms should ensure the satisfiability of the
CPS correctness and properties. When a fault or an attack
occurs, the recovery mechanism is to improve the corrections
and the countermeasures. Both of them are modeled as a game
between two players, the proponent and the opponent, and
represent the scenario of Attack-Defense and Fault-Correction
Trees.

VII. CPS VALIDATION WITH COQ

A Coq program is a sequence of declarations and definitions
where each declaration associates a name with a qualifica-
tion. It supports few primitive constructions (functions, (co)-
inductive definitions, product types, sorts) and a limited num-
ber of rules for type-checking and computation. Coq is used to
represent objects, functions, propositions and proofs. Further,
it helps designing theories and proofs offering mechanisms
like user extensible notations, tactics for proof automation. In
the following, we provide in Coq the basic notions, definition,
tactics proper to CPS defined in Section IV.
• The entities are defined as an inductive type.

Inductive Entity : Set := | CreateEntity :
nat -> Entity | Empty : Entity.

• The channels, logical or physical, define the network
by connecting the entities. Each channel is an inductive
type, ChannelType, describing the type/directions of the
channel.

Inductive ChannelType : Set := | Phy: ChannelType
|LogUnid:ChannelType |LogBid:ChannelType.

Definition Channel :
Set:= ChannelType * nat * Entity * Entity.

• The network describes all channels/connections between
the entities.
Definition Network: Set :=(list Entity)*(list Channel)

*(list Entity).

• A CPS is defined as follows.
Record CPS : Type := myCPS {

states : Set ; actions : Set ;
net : Network ; transitions : Set}.

• The behaviour of an entity depends on the expression
reordering its actions. Here, we define by induction the
behaviours of the defined actions with respect to the
connection operators (sequential and guarded decision
operators).

Inductive alpha : Set := send | receive | update | Seq| Dec.
Fixpoint s1 (xs : list alpha) : bool :=}
match xs with}
| send :: rest => s2 rest} | receive :: rest => s2 rest}
| update :: rest => s2 rest} | => false}

end}
with s2 (xs : list alpha) : bool :=}
match xs with}

| nil => true}
| seq :: rest => s2 rest} | => false}

end}
with s3 (xs : list alpha) : bool :=
match xs with

| Dec :: rest => s2 rest | => false
end.

Example 4. Based on the defined CPS in coq, the following
fragment is a part of the generated Coq code proper to Example
1.
Module Type types.
Parameter P PI: Type.

End types.

Inductive state : Type := BeforeAction :
state | AfterAction : state.

Definition next_state (s:state) : state :=
match s with

| BeforeAction => AfterAction
| AfterAction => AfterAction

end.
Eval simpl in (next_state BeforeAction).
Variable Entity : Type.
Variable EntityArms : Entity. Variable EntityObject : Entity.
Variable EntityEnvironment : Entity.
Definition relation := Entity -> Entity -> Prop.
Variable R : relation.
Definition Receive : Prop := forall a b c

: Entity , R a b /\ ˜R c b -> ˜R a b /\ R c b.

The following theorem validates the correctness of the devel-
oped design.
Lemma ReceiveProf : forall a b c : Entity ,

(R a b /\ ˜R c b) -> (˜R a b /\ R c b).

VIII. CPS EVALUATION WITH MAUDE

In this section, we first give an overview of the Maude
framework and rewriting logic. The Maude specification of
CPS is then described through the implementation of the
generic CPS model introduced in Section IV, and explained
through the cars manufacturing case study (Example 1).

Maude [1] is a high-level formal specification language
based on rewriting and equational logic. A Maude program
defines a logical theory which can be seen as a domain-specific
language and a Maude computation implements a logical
deduction using axioms specified in the theory. A Maude-
based specification is structured in two parts. (1) functional
modules specifying a theory in membership equational logic
as a pair (Θ, E ∪ A) where signature Θ specifies the type
structure (sorts, operators etc.). E is the collection of possibly
conditional equations, and A is a collection of equational
attributes for the operators (i.e., associative, commutative,
etc.). (2) system modules specifying a rewrite theory as a triple
(Θ, E∪A,R) where (Θ, E∪A) is the equational theory part
and R is a collection of possibly conditional rewrite rules.

To implement the example of car assembly CPS, we define
a Maude functional module CPS-SPEC to design the system
structure: the set of entities (car elements and robotic assembly
arms) and their attributes. together with monitoring predicates
and actions (setters Σ and getters Actuator) to be applied
over it (i.e., to retrieve/update attributes attr).

The entire system S is expressed in Maude as
a sort SYS according to its associated constructor:
op SYS{_}: EL -> SYS [ctor] where EL is a sort
expressing a set of entities E . An entity ε is expressed as a

sort E. However, in the Maude specification we distinguish
the types of entities through different sorts as the entities
play different roles : a car frame (sort F), a door (D), a
wheel (W) and a robotic arm (A). Every sort has its specific
constructor but are all subsorts of the generic entity sort
(subsorts F D A W < E).

This distinction is necessary for three reasons It allows : (1)
the Maude interpreter recognizing the nature of an entity, (2)
specifying generic actions (such as getId(ε)) that can be
implemented (i.e., override) accordingly to all specific sorts
(as their structural constructors differ) and (3) scaling up
and extending the specification while minimizing the risks
of regression. These points ultimately allow restricting the
possible actions to the only concerned entities. It would for
example prevent a robotic arm from grabbing another arm. Or
more generally, all entities will simply ignore the entities they
are not designed to interact with (even when scaling up).

Notice that the concept of network (N) is integrated implic-
itly into the Maude specification. In fact, different entities are
linked if mentioned in a common action or if their identifiers
(id) appear in each other’s structure. For example, a link is
implicitly expressed between an arm a and a door d with the
operation setAttch(a,d) which attaches d to a.

To specify the CPS behaviors, we define a Maude sys-
tem module CPS-BEH to model the entire system be-
havior. We define a set of guarded rewrite rules R ex-
pressing the actions to be applied in order to achieve the
system’s purpose T . In other terms, R ≡ T . A con-
ditional (guarded) rewrite rule (crl) named r is given
with crl [r]: term => term' if (condition).
The semantics of (crl) is rewriting or re-expressing (=>)
the left-hand side of the rule (term) to its right-hand side
(term'), where term and term' are structural states (i.e.,
configurations) of the system or a part of the system that have
the same sort ∈ Θ (i.e., out of SYS, E, etc.). A conditional
rewrite rule is applied only if the specified guard condition
is satisfied.

Example 5. We give the crl describing the task of ”grabbing
a wheel” (gw) from the CPS car assembly use case :
crl[gw]:SYS{ f + frd + fld + brd + bld + ga + pa + wl }

=> SYS{ f + frd + fld + brd + bld
+ setBusyT(ga) + pa + getW(ga,wl) }

if not isBusy(ga) and not isBusy(pa)
and getW(ga,wl) =/= null and isMounted(f)

and isPaint(f) and not wheelsOK(f) .

In gw, the entire system structure SYS{εi + ... + εn} is
expressed with variables of the suitable sort: the left side shows
the frame f, the front/back right/left doors (f/b)(r/l)d,
the painting/grabbing arms (p/g)a and a set of wheels
wl. The right side specifies how the system is rewritten to
express the action of a wheel being grabbed. The action
getW(ga,wl) expresses the arm ga grabbing a wheel from
the set of wheels wl, which will set a wheel as ”attached to
ga”. The state of ga is also affected as it is marked as busy
with setBusyT(ga), which makes gw ∈ Beh(ga).

The rule gw is applied only if its specified guard is satisfied.
The guard expresses the conjuction of different conditions:
the grabbing arm needs to be free (not isBusy(ga)) to
initiate the operation. The painting arm also needs to be free

Fig. 6. Automatic car assembly task tree

to prevent any collisions. getW(ga,wl) =/= null is the
post-condition of getW which has to return a wheel (6=null).
isMounted(f), isPaint(f) and (wheelsOK(f)) are
predicates expressing the state of f and therefore the different
Goals of the system tasks T . Moreover, this integrates the
preorder relation (�) on the goals (thus on the tasks: mounting
doors � painting � mounting wheels).

Figure 6 shows the system task tree resulting from the
behavior simulation from a naked car frame as initial state
(E0). The tree shows the tasks, their goals (in order) and the
different arcs (as sequences of rules) leading to the goals. In
the doors mounting task, the different paths show the possibil-
ity to attach doors in any order (but each door at a specific em-
placement). However, the wheels mounting task produces 24
possible and correct outcomes (as any wheel can be attached
at any position: 4! = 24). The simulation is made through
the Maude search command : search INIT =>* s:SYS

such that isComplete(s:SYS).
Where all the possible paths of execution are explored from

a predefined initial state INIT of sort SYS, in 0 or more
steps (=>*), in search for a state s of sort SYS satisfying
the predicate isComplete(s) which here is our final goal
(i.e., a completely mounted and painted car). Our Maude
specification of the car assembly CPS is available online2.

As the system states can be expressed as predicates, notice
that Maude also allows conducting a LTL state-based model-
checking verification technique to (1) show the reachability
of the desired state and (2) diagnose malfunctions by calcu-

2https://github.com/aanorlondo/MAUDE-CPS

lating counter-examples. Maude model-checking methodology
is described in [14].

IX. CONCLUSION

In this paper, we have presented a first step towards a frame-
work to automate the analysis of the functional correctness
and security insurance for a more resilient CPS. The approach
defines a system as a network of entities whereas each entity
has its proper structure and behaviour to execute a precise task.
The overall goal of the system is structured as an ordered tree
of tasks. To ensure the functional correctness and safety of a
CPS, the framework proposes using Coq theorem prover and
provides a rewriting logic specification, through the language
Maude in order to verify the CPS liveness property. We
illustrated the effectiveness of the proposed framework on an
automated car assembly case study.

As future work, We intend to extend the framework capabili-
ties to (1) cover the agent operators, (2) decentralize the system
with a blockchain architecture, and (3) detail the proposed
formalism by applying the framework on more complex use
cases.

REFERENCES

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott, All About Maude-A High-Performance Logical Framework:
How to Specify, Program, and Verify Systems in Rewriting Logic.
Springer, 2007, vol. 4350.

[2] A. Mohamed Anis, O. Samir, and B. ourad, “A review on cyber-physical
systems: Models and architectures,” in The 29th IEEE Int. Conf. on
Enabling Technologies: Infrastructure for Collaborative Enterprises, ser.
WETICE’20, 2020.

[3] C. Cheh, A. M. Fawaz, M. A. Noureddine, B. B. Chen, W. G. Temple,
and W. H. Sanders, “Determining tolerable attack surfaces that preserves
safety of cyber-physical systems,” 2018 IEEE 23rd Pacific Rim Int.
Symposium on Dependable Computing (PRDC), pp. 125–134, 2018.

[4] S. Ouchani, “Ensuring the Functional Correctness of IoT through Formal
Modeling and Verification,” in The 8th Int. Conference on Model and
Data Engineering, MEDI, LNCS, Springer, 2018, pp. 401–417.

[5] G. Bakirtzis, B. T. Carter, C. R. Elks, and C. H. Fleming, “A model-
based approach to security analysis for cyber-physical systems,” in 2018
IEEE International Systems Conference (SysCon), pp. 1–8.

[6] Y. Chen, S. Kar, and J. M. F. Moura, “Dynamic attack detection in cyber-
physical systems with side initial state information,” IEEE Transactions
on Automatic Control, vol. 62, no. 9, pp. 4618–4624, 2017.

[7] R. Mitchell and I. Chen, “Modeling and analysis of attacks and counter
defense mechanisms for cyber physical systems,” IEEE Transactions on
Reliability, vol. 65, no. 1, pp. 350–358, 2016.

[8] A. Agrawal, C. M. Ahmed, and E.-C. Chang, “Poster: Physics-based
attack detection for an insider threat model in a cyber-physical system,”
in Asia Conference on Computer and Communications Security, ser.
ASIACCS ’18. ACM, 2018, pp. 821–823.

[9] S. Ouchani, “Towards a security reinforcement mechanism for social
cyber-physical systems,” in Smart Applications and Data Analysis.
Springer, 2020, pp. 59–73.

[10] M. Stoicescu, J.-C. Fabre, and M. Roy, “Architecting resilient computing
systems: A component-based approach for adaptive fault tolerance,”
Journal of Systems Architecture, vol. 73, pp. 6 – 16, 2017.

[11] N. Pedroni, “Advanced Methods For The Risk, Vulnerability And
Resilience Assessment Of Safety-Critical Engineering Components,
Systems And Infrastructures, In The Presence Of Uncertainties,” Ph.D.
dissertation, Grenoble 1 UGA - Université Grenoble Alpes, Feb 2016.

[12] Y. Fang and E. Zio, Game-Theoretic Decision Making for the Resilience
of Interdependent Infrastructures Exposed to Disruptions. Springer,
2019, pp. 97–114.

[13] H. Saurabh and E. Christian, “Resilience Design Patterns: A Structured
Approach to Resilience at Extreme Scale,” Super computing Frontiers
and Innovations, vol. 4, no. 3, Sep 2017.

[14] K. Khebbeb, N. Hameurlain, and F. Belala, “A maude-based rewriting
approach to model and verify cloud/fog self-adaptation and orchestra-
tion,” Journal of Systems Architecture, p. 101821, 2020.

